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© Motivation
Why do we need temperature data at full horizontal resolution?

© Forward modelling for AIRS
Brief description of the JURASSIC forward model.
Model optimization and validation.

© Stratospheric temperature retrievals
Brief description of the optimal estimation approach.
Retrieval parameter studies and characteristics.

© First results and summary
Retrieved temperature data for selected AIRS granules.



Motivation

AIRS radiance measurements provide information about
stratospheric gravity waves on small horizontal scales...

10-SEP-2003, 04:26 UTC, near Antarctic peninsula
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(Typical horizontal wavelength in this area: Ax ~ 100km)



Example of gravity waves produced by deep convection...

12-JAN-2003, 16:44 UTC, near Darwin, Australia
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= Loss of horizontal resolution in operational temperature retrieval
(20 km — 60 km; cloud-clearing) is a drawback for gravity wave studies...



Forward Modelling for AIRS

@ Juelich Rapid Spectral Simulation Code (JURASSIC)

@ Fast radiative transfer model for the mid-infrared spectral
region (4 ...15micron, LTE, no scattering, no surface).

@ Approximations for fast radiative transfer calculations:
Band Transmittance Approximation

Emissivity Growth Approximation

Independent Gas Approximation

Look-up tables for spectral mean emissivity

@ Flexible handling of different types of observation geometry
and atmospheric data:
o Interpolation of 1D, 2D or 3D atmospheric data
(single profiles, satellite track, model output)
o Observer within or outside atmosphere
e Nadir, sub-limb, limb or zenith viewing



Forward Modelling for AIRS

@ Modelling of instrument effects:
e Spectral filter functions (ILS, SRF....)
o Vertical field of view (FOV)
e Offset and gain calibration

@ Retrieval interface:

e Definition of state and measurement vector (x,b,y)
e Jacobians by numerical perturbation (z, p, T, g;, k;, Co, C1)

@ Optimization studies and validation studies:
Optimized ray-tracing step length

e Optimized emissivity look-up tables

e Comparisons against MIPAS RFM

o Comparisons against AIRS SARTA

@ Documentation and download:
https://jurassic.icg.kfa-juelich.de




Forward Modelling for AIRS

Optimization of ray-tracing step size...
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= CPU-time for forward calculation is about 20 msec on a normal PC.
Reduction by a factor 1000 compared to line-by-line reference calculations.



Forward Modelling for AIRS

Comparison of JURASSIC and RFM...
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=- Reference model output is reproduced within AIRS noise.
Results for 4 micron channels are similar.



Comparison of temperature kernel functions...

Forward Modelling for AIRS
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= Good agreement! 4 micron kernels are rather broad (due to broad SRFs),
i. e. provide less information on vertical distribution, but help to reduce noise.




Stratospheric Temperature Retrievals

@ Optimal estimation approach: Find optimal estimate
(i.e. MAP solution) of retrieval targets x for given
measurements y by minimizing a cost function:

J(x) = [y — Fx))"SC'ly — F(x)] + (X — Xa) 'S5 (X — Xa)

measurements — forward calculation atmospheric state — a priori
X = atmospheric state
y = radiance measurements
S. = measurement error covariance
F(x) = simulated observations (forward model)
X5 = a priori state

S, = a priori covariance



Stratospheric Temperature Retrievals

@ Retrieval grid:

e 1D case: homogeneously stratified atmosphere
o Fixed altitudes: 3km below 60 km, 5km up to 90 km
o Retrieve only T, get p from hydrostatic equilibrium.

@ Measurement error covariance:
e Consider only noise (uncorrelated).

@ A priori data:

e Use AIRS operational retrieval results as a priori state
(inter/extrapolate data gaps).

e Use a priori uncertainty of o; = 20K,
correlations from first-order autoregressive model:

Sj = oiojexp(—Az/cz)

Correlation length c; is an important tuning parameter!



Stratospheric Temperature Retrievals

Selection of AIRS channels for the retrieval...

4 micron temperature channels
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= Exclude all channels where tropospheric fraction of kernel functions
(zirop = 17.5km) exceeds 1% to minimize influence of clouds...



Stratospheric Temperature Retrievals

Influence of a priori data...
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= Varying the a priori profile by 20 K causes differences below £1.5K in
the retrieved profile at 20 . . . 55 km altitude.



Stratospheric Temperature Retrievals

Retrieval error due to noise...
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= We use an a priori vertical correlation length of 50 km to reduce the
retrieval error due to noise: The resulting erroris 1...2Kat20...55km.



Stratospheric Temperature Retrievals

Vertical resolution...
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= For 50 km a priori vertical correlation length the vertical resolution is
7...11kmat20...55km.



Full Resolution Temperature Data — First results

Gravity waves near Antarctic peninsula...
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= Full resolution retrieval results resemble operational data,
but gravity wave amplitudes are larger.




Full Resolution Temperature Data — First results

Gravity waves produced by deep convection...
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= Retrieval at full horizontal resolution reveals small-scale structures!
Warm bias (about 3. ..5K) in full resolution retrievals at the stratopause.




@ We use the fast radiative transfer model JURASSIC to
simulate AIRS measurements:
e The fast model helps to reduce CPU-time by a factor 1000.
o Reference calculations are reproduced within AIRS noise.

@ We use the optimal estimation approach to retrieve
temperature data for the stratosphere:

Altitude Range: 20...55km

e Vertical resolution: 7...11km (about 6 dfs)

e A priori information: less than 5%

o Retrieval error (due to noise): 1...2K

@ First retrieval results for selected granules look promising:
The full resolution data much better reveal the horizontal
small-scale structures caused by gravity waves.



